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Extract from the forthcoming book “Quantum Fractals”
We have defined the Cantor set through an iterated function system

consisting of two transformations that are selected with equal probabilities.
These transformations, let us call them here T1, T2 :

T1(x) =
1

3
x, (1)

T2(x) =
1

3
x+

2

3
. (2)

act on points of the interval [0, 1]. Whenever we have a transformation acting
on points, it induces transformation of functions, we denote it by T ∗ :

(T ∗f)(x) = f(T (x)). (3)

When we have two transformations, T1 and T2, that are selected with prob-
abilities p1 and p2, the resulting function is also weighted with probabilities.
This way we arrive at what is called the Koopman operator T associated
with the IFS:

(T ∗f)(x) = p1f(T1(x)) + p2f(T2(x)). (4)

Dual to the space of functions is the space of bounded measures. Given a
measure µ, we can associate with each function (that is ‘measurable’ etc.)
the number (µ, f) =

∫
f dµ. We define the dual operator T∗ on measures by

the formula:
(T∗µ, f) = (µ, T ∗f). (5)
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Then T∗ is called the Frobenius-Perron operator associated with the IFS.
We are looking for a probabilistic measure that is invariant with respect
to T∗. In most cases studied in the literature one can prove that such a
measure exists and is unique. For the Cantor system we can calculate and
graphically represent an approximation for this invariant measure. To this
end we discretize the interval [0, 1] into, say, N = 1000 small intervals ∆i =
[(i− 1) ∗∆, i ∗∆], i = 1, ..., N, ∆ = 1.0/N. In the space of function we chose
an orthogonal basis ei(x) = χ∆i

(x), where χ∆ denotes the characteristic
function of the set ∆ ⊂ [0, 1]: χ∆(x) = 1 for x ∈ ∆, otherwise χ∆(x) = 0..
Then we approximate the operator T ∗ by a finite dimensional. Namely, we
want to decompose T ∗ei, projected onto the subspace generated by ei,into
ej :

T ∗ei =
∑
j

T ∗
jiej. (6)

In order to calculate the matrix coefficients T ∗
ji, we take scalar products (in

L2) of the above formula with ek.

(ek, T
∗ei) =

∑
j

T ∗
ji(ek, ej). (7)

The functions ei are orthogonal and (ek, ej) = ∆δk,j, where δkj is the Kro-
necker delta. This way we get the formula:

T ∗
ki =

1

2∆
(ek, T

∗ei) =
1

2∆

∫
∆k

(
χ∆i

(
x

3
) + χ∆i

(
x+ 2

3
)

)
dx, (8)

where the factor 2 in the denominator comes from the fact that each of the
two transformations is selected with the probability 1/2.

Now, χ∆(
x
3
) = χ3∆(x), and χ∆(

x+2
3
) = χ3∆−2(x). Therefore we obtain the

following formula:

T ∗
ki =

1

2∆
(|3∆i ∩∆k|+ |(3∆i − 2) ∩∆k|, (9)

where we denoted by |.| the length of the corresponding interval.
Notice that owing to the fact that

∑
i∆i is the whole interval [0, 1], we

get
∑

i T
∗
ki = 1. Thus the sum of elements in every row of the matrix T ∗

ki is
one, therefore it has an eigenvector belonging to the eigenvalue 1 (the vector
with all its components equal 1.). But a matrix and a transposed matrix have

2



the same eigenvalues. The Frobenius Perron operator is dual to T ∗, therefore
it is represented by the transposed matrix, let us call it T : Tik = Tki. It’s
eigenvector to the eigenvalue one is exactly the eigenvector we are looking
for - our approximation to the invariant measure.

Given two intervals (a1, b1) and (c1, d1) we have the following formula for
the length of their intersection:

|(a1, b1) ∩ (a2, b2)| = max (0,min(b1, b2)−max(a1, a2)) . (10)

Applying to our case we obtain:

Tik =
1

2
(max(0, min(3i, k)−max(3i− 3, k − 1)))

+
1

2
max (0, min(3i− 2N, k)−max(3i− 3− 2N, k − 1))) . (11)

The matrix T has a simple band structure, especially regular when N = 3k,
where k is an integer. Fig. 1 is a graphical representation of this structure
for k = 18. We have there either 0 or 1

2
. The problem of finding the invariant

eigenvector of such a matrix can be solved exactly. For N = 1000 the solution
can be found numerically - it is represented on Fig. 2.
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Figure 1: Band structure of the Frobenius-Perron matrix for the Cantor set
for N = 54.
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Figure 2: Frobenius-Perron matrix for the Cantor set for N = 1000.
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